Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.
نویسندگان
چکیده
Silent sites in mammals have classically been assumed to be free from selective pressures. Consequently, the synonymous substitution rate (Ks) is often used as a proxy for the mutation rate. Although accumulating evidence demonstrates that the assumption is not valid, the mechanism by which selection acts remain unclear. Recent work has revealed that the presence of exonic splicing enhancers (ESEs) in coding sequence might influence synonymous evolution. ESEs are predominantly located near intron-exon junctions, which may explain the reduced single-nucleotide polymorphism (SNP) density in these regions. Here we show that synonymous sites in putative ESEs evolve more slowly than the remaining exonic sequence. Differential mutabilities of ESEs do not appear to explain this difference. We observe that substitution frequency at fourfold synonymous sites decreases as one approaches the ends of exons, consistent with the existing SNP data. This gradient is at least in part explained by ESEs being more abundant near junctions. Between-gene variation in Ks is hence partly explained by the proportion of the gene that acts as an ESE. Given the relative abundance of ESEs and the reduced rates of synonymous divergence within them, we estimate that constraints on synonymous evolution within ESEs causes the true mutation rate to be underestimated by not more than approximately 8%. We also find that Ks outside of ESEs is much lower in alternatively spliced exons than in constitutive exons, implying that other causes of selection on synonymous mutations exist. Additionally, selection on ESEs appears to affect nonsynonymous sites and may explain why amino acid usage near intron-exon junctions is nonrandom.
منابع مشابه
Regions of extreme synonymous codon selection in mammalian genes
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for ...
متن کاملLocating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes.
The degeneracy of the genetic code allows protein-coding DNA and RNA sequences to simultaneously encode additional, overlapping functional elements. A sequence in which both protein-coding and additional overlapping functions have evolved under purifying selection should show increased evolutionary conservation compared to typical protein-coding genes--especially at synonymous sites. In this st...
متن کاملUnexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci.
If sequencing was possible only for genomes, and not for RNAs or proteins, then functional protein-coding exons would be recognizable by their unusual patterns of nucleotide composition, specifically a high GC content across the body of exons, and an unusual nucleotide content near their edges. RNAs and proteins can, of course, be sequenced but the extent of functionality of intergenic long non...
متن کاملSynonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution.
It is well established that exonic sequences contain regulatory elements of splicing that overlap with coding capacity. However, the conflict between ensuring splicing efficiency and preserving the coding capacity for an optimal protein during evolution has not been specifically analyzed. In fact, studies on genomic variability in fields as diverse as clinical genetics and molecular evolution m...
متن کاملSynonymous Mutations Frequently Act as Driver Mutations in Human Cancers
Synonymous mutations change the sequence of a gene without directly altering the sequence of the encoded protein. Here, we present evidence that these "silent" mutations frequently contribute to human cancer. Selection on synonymous mutations in oncogenes is cancer-type specific, and although the functional consequences of cancer-associated synonymous mutations may be diverse, they recurrently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2006